Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63.248
1.
Microbiome ; 12(1): 84, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725076

BACKGROUND: Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in different environments. Identification of ARGs, particularly from high-throughput sequencing data of the specimens, is the state-of-the-art method for comprehensively monitoring their spread and evolution. Current computational methods to identify ARGs mainly rely on alignment-based sequence similarities with known ARGs. Such approaches are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually simple and could not accommodate variations across different gene families and regions. It is also difficult to scale up when sequence data are increasing. RESULTS: In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs that do not depend on sequence alignment. This approach enables a more efficient discovery of both known and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial (30-50 aa; 100-150 nt) sequences to full-length protein or genes, allowing its application in both target sequencing and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learning models including DeepARG and HMD-ARG in most of the application scenarios especially quasi-negative test and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 57% relative to DeepARG. CONCLUSIONS: ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing data. ARGNet is freely available at https://github.com/id-bioinfo/ARGNet , with an online service provided at https://ARGNet.hku.hk . Video Abstract.


Bacteria , Neural Networks, Computer , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , High-Throughput Nucleotide Sequencing/methods , Computational Biology/methods , Genes, Bacterial/genetics , Drug Resistance, Microbial/genetics , Humans , Deep Learning
2.
Microbiome ; 12(1): 87, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730321

BACKGROUND: In environmental bacteria, the selective advantage of antibiotic resistance genes (ARGs) can be increased through co-localization with genes such as other ARGs, biocide resistance genes, metal resistance genes, and virulence genes (VGs). The gut microbiome of infants has been shown to contain numerous ARGs, however, co-localization related to ARGs is unknown during early life despite frequent exposures to biocides and metals from an early age. RESULTS: We conducted a comprehensive analysis of genetic co-localization of resistance genes in a cohort of 662 Danish children and examined the association between such co-localization and environmental factors as well as gut microbial maturation. Our study showed that co-localization of ARGs with other resistance and virulence genes is common in the early gut microbiome and is associated with gut bacteria that are indicative of low maturity. Statistical models showed that co-localization occurred mainly in the phylum Proteobacteria independent of high ARG content and contig length. We evaluated the stochasticity of co-localization occurrence using enrichment scores. The most common forms of co-localization involved tetracycline and fluoroquinolone resistance genes, and, on plasmids, co-localization predominantly occurred in the form of class 1 integrons. Antibiotic use caused a short-term increase in mobile ARGs, while non-mobile ARGs showed no significant change. Finally, we found that a high abundance of VGs was associated with low gut microbial maturity and that VGs showed even higher potential for mobility than ARGs. CONCLUSIONS: We found that the phenomenon of co-localization between ARGs and other resistance and VGs was prevalent in the gut at the beginning of life. It reveals the diversity that sustains antibiotic resistance and therefore indirectly emphasizes the need to apply caution in the use of antimicrobial agents in clinical practice, animal husbandry, and daily life to mitigate the escalation of resistance. Video Abstract.


Anti-Bacterial Agents , Bacteria , Gastrointestinal Microbiome , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/drug effects , Humans , Infant , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Denmark , Drug Resistance, Bacterial/genetics , Genes, Bacterial/genetics , Female , Feces/microbiology , Drug Resistance, Microbial/genetics , Male , Cohort Studies , Infant, Newborn
3.
J Hazard Mater ; 471: 134378, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38691926

The worldwide emergence of antimicrobial resistance (AMR) poses a substantial risk to human health and environmental stability. In agriculture, organic amendments (derived from organic sources such as manure, and plant residues) are beneficial in restoring soil properties and providing essential nutrients to crops but raise concerns about harboring antibiotic resistance, which emphasizes the need for vigilant monitoring and strategic interventions in their application. The current study assessed the impact of farming practices (organic and conventional) in a three-year field experiment with pigeonpea-wheat cropping system, focusing on the transmission of AMR using culture-dependent and -independent approaches, and soil nutrient content. Markers for antibiotic resistance genes (ARGs) (aminoglycoside-aacA, ß-lactam-blaTEM, chloramphenicol-cmlA1, macrolide-ermB, sulfonamides-sul1, sul2, and tetracycline-tetO) and integrons (intl1 and intl2) were targeted using qPCR. Manure amendments, particularly FYM1, exhibited a higher abundance of copies of ARGs compared to the rhizospheric soil. Organic farming was associated with higher copies of intl2, sul1, blaTEM, and tetO genes, while conventional farming showed increased copies of sul2 and ermB genes in the rhizosphere. Significant positive correlations were observed among soil nutrient contents, ARGs, and MGEs. The notable prevalence of ARGs linked to manure amendments serves as a cautionary note, demanding responsible management practices.


Cajanus , Manure , Soil Microbiology , Triticum , Cajanus/genetics , Manure/microbiology , Triticum/genetics , Anti-Bacterial Agents/pharmacology , Soil/chemistry , Genes, Bacterial , Organic Agriculture , Crops, Agricultural , Drug Resistance, Microbial/genetics , Agriculture , Integrons/genetics
4.
BMC Ecol Evol ; 24(1): 57, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711016

BACKGROUND: Complex descriptions of new strains of cyanobacteria appear very frequently. The main importance of these descriptions concerns potential new substances that they could synthesise, as well as their different properties as a result of their different ecological niches. The main gene used for these descriptions is 16 S with ITS or whole genome sequencing. Neowestiellopsis persica represents a unique example of the influence of ecology on morphological changes, with almost identical 16 S identity. Although our previously described Neowestiellopsis persica strain A1387 was characterized by 16 S analysis, we used different molecular markers to provide a way to separate strains of this genus that are closely related at the genetic level. MATERIALS AND METHODS: In order to conduct an in-depth study, several molecular markers, namely psbA, rpoC1, nifD, nifH and cpcA were sequenced and studied in Neowestiellopsis persica strain A1387. RESULTS: The results of the phylogenetic analysis, based on cpcA, showed that the studied strain A 1387 falls into a separate clade than N. persica, indicating that this signature sequence could be a useful molecular marker for phylogenetic separation of similar strains isolated in the future. CONCLUSIONS: Analysis of strain A1387 based on gene differences confirmed that it is a Neowestiellopsis strain. The morphological changes observed in the previous study could be due to different ecological and cultivation conditions compared to the type species. At the same time, the sequences obtained have increased our understanding of this species and will help in the future to better identify strains belonging to the genus Neowestiellopsis.


Cyanobacteria , Phylogeny , Cyanobacteria/genetics , Cyanobacteria/classification , Bacterial Proteins/genetics , Genes, Bacterial/genetics
5.
Microb Ecol ; 87(1): 71, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748252

The high prevalence of antibiotic resistant bacteria (ARB) in several environments is a great concern threatening human health. Particularly, wastewater treatment plants (WWTP) become important contributors to the dissemination of ARB to receiving water bodies, due to the inefficient management or treatment of highly antibiotic-concentrated wastewaters. Hence, it is vital to develop molecular tools that allow proper monitoring of the genes encoding resistances to these important therapeutic compounds (antibiotic resistant genes, ARGs). For an accurate quantification of ARGs, there is a need for sensitive and robust qPCR assays supported by a good design of primers and validated protocols. In this study, eleven relevant ARGs were selected as targets, including aadA and aadB (conferring resistance to aminoglycosides); ampC, blaTEM, blaSHV, and mecA (resistance to beta-lactams); dfrA1 (resistance to trimethoprim); ermB (resistance to macrolides); fosA (resistance to fosfomycin); qnrS (resistance to quinolones); and tetA(A) (resistance to tetracyclines). The in silico design of the new primer sets was performed based on the alignment of all the sequences of the target ARGs (orthology grade > 70%) deposited in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, allowing higher coverages of the ARGs' biodiversity than those of several primers described to date. The adequate design and performance of the new molecular tools were validated in six samples, retrieved from both natural and engineered environments related to wastewater treatment. The hallmarks of the optimized qPCR assays were high amplification efficiency (> 90%), good linearity of the standard curve (R2 > 0.980), repeatability and reproducibility across experiments, and a wide linear dynamic range. The new primer sets and methodology described here are valuable tools to upgrade the monitorization of the abundance and emergence of the targeted ARGs by qPCR in WWTPs and related environments.


Anti-Bacterial Agents , DNA Primers , Genes, Bacterial , Real-Time Polymerase Chain Reaction , Wastewater , DNA Primers/genetics , Real-Time Polymerase Chain Reaction/methods , Wastewater/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification
6.
Article En | MEDLINE | ID: mdl-38695863

Human breast milk contains lactic acid bacteria (LAB), which have an important influence on the composition of the intestinal microbia of infants. In this study, one strain of an α-hemolytic species of the genus Streptococcus, IMAU99199T, isolated from the breast milk of a healthy nursing mother in Hohhot city PR China, was studied to characterise its taxonomic status using phenotypic and molecular taxonomic methods. The results indicated that it represented a member of the mitis-suis clade, pneumoniae subclade of the genus Streptococcus. It is a Gram-stain-positive, catalase-negative and oxidase-negative bacterium, and the cells are globular, paired or arranged in short chains. The results of a phylogenetic analysis of its 16S rRNA gene and two housekeeping genes (gyrB and rpoB) placed it in the genus Streptococcus. A phylogenetic tree based on 135 single-copy genes sequences indicated that IMAU99199T formed a closely related branch well separated from 'Streptococcus humanilactis' IMAU99125, 'Streptococcus bouchesdurhonensis' Marseille Q6994, Streptococcus mitis NCTC 12261T, 'Streptococcus vulneris' DM3B3, Streptococcus toyakuensis TP1632T, Streptococcus pseudopneumoniae ATCC BAA-960T and Streptococcus pneumoniae NCTC 7465T. IMAU99199T and 'S. humanilactis' IMAU99125 had the highest average nucleotide identity (93.7 %) and digital DNA-DNA hybridisation (55.3 %) values, which were below the accepted thresholds for novel species. The DNA G+C content of the draft genome of IMAU99199T was 39.8 %. The main cellular fatty acids components of IMAU99199T were C16 : 0 and C16 : 1ω7. It grew at a temperature range of 25-45 °C (the optimum growth temperature was 37 °C) and a pH range of 5.0-8.0 (the optimum growth pH was 7.0). These data indicate that strain IMAU99199T represents a novel species in the genus Streptococcus, for which the name Streptococcus hohhotensis sp. nov. is proposed. The type strain is IMAU99199T (=GDMCC 1.1874T=KCTC 21155T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Milk, Human , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Streptococcus , RNA, Ribosomal, 16S/genetics , Humans , Female , China , DNA, Bacterial/genetics , Milk, Human/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , Fatty Acids/analysis , Nucleic Acid Hybridization , Genes, Bacterial
7.
Vet Microbiol ; 293: 110103, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718528

Oxazolidinones are potent antimicrobial agents used to treat human infections caused by multidrug-resistant Gram-positive bacteria. The growing resistance to oxazolidinones poses a significant threat to public health. In August 2021, a linezolid-resistant Enterococcus faecium BN83 was isolated from a raw milk sample of cow in Inner Mongolia, China. This isolate exhibited a multidrug resistance phenotype and was resistant to most of drugs tested including linezolid and tedizolid. PCR detection showed that two mobile oxazolidinones resistance genes, optrA and poxtA, were present in this isolate. Whole genome sequencing analysis revealed that the genes optrA and poxtA were located on two different plasmids, designated as pBN83-1 and pBN83-2, belonging to RepA_N and Inc18 families respectively. Genetic context analysis suggested that optrA gene on plasmid pBN83-1 was located in transposon Tn6261 initially found in E. faecalis. Comprehensive analysis revealed that Tn6261 act as an important horizontal transmission vector for the spread of optrA in E. faecium. Additionally, poxtA-bearing pBN83-2 displayed high similarity to numerous plasmids from Enterococcus of different origin and pBN83-2-like plasmid represented a key mobile genetic element involved in movement of poxtA in enterococcal species. The presence of optrA- and poxtA-carrying E. faecium in raw bovine milk represents a public health concern and active surveillance is urgently warranted to investigate the prevalence of oxazolidinone resistance genes in animal-derived food products.


Anti-Bacterial Agents , Enterococcus faecium , Milk , Oxazolidinones , Animals , Cattle , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Milk/microbiology , China/epidemiology , Oxazolidinones/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Linezolid/pharmacology , Whole Genome Sequencing , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/epidemiology , Genes, Bacterial/genetics
8.
Bioresour Technol ; 401: 130715, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641304

To mitigate the environmental risks posed by the accumulation of antibiotic mycelial dregs (AMDs), this study first attempted over 200 tons of mass production fermentation (MP) using tylosin and spectinomycin mycelial dregs alongside pilot-scale fermentation (PS) for comparison, utilizing the integrated-omics and qPCR approaches. Co-fermentation results showed that both antibiotics were effectively removed in all treatments, with an average removal rate of 92%. Antibiotic resistance gene (ARG)-related metabolic pathways showed that rapid degradation of antibiotics was associated with enzymes that inactivate macrolides and aminoglycosides (e.g., K06979, K07027, K05593). Interestingly, MP fermentations with optimized conditions had more efficient ARGs removal because homogenization permitted faster microbial succession, with more stable removal of antibiotic resistant bacteria and mobile genetic elements. Moreover, Bacillus reached 75% and secreted antioxidant enzymes that might inhibit horizontal gene transfer of ARGs. The findings confirmed the advantages of MP fermentation and provided a scientific basis for other AMDs.


Anti-Bacterial Agents , Fermentation , Spectinomycin , Tylosin , Tylosin/pharmacology , Anti-Bacterial Agents/pharmacology , Spectinomycin/pharmacology , Mycelium/drug effects , Drug Resistance, Microbial/genetics , Drug Resistance, Microbial/drug effects , Biodegradation, Environmental , Genes, Bacterial
9.
J Hazard Mater ; 471: 134336, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38640665

Microbial herbicide degradation is an efficient bioremediation method. In this study, a strain of Streptomyces nigra, LM01, which efficiently degrades atrazine and nicosulfuron, was isolated from a corn field using a direct isolation method. The degradation effects of the identified strain on two herbicides were investigated and optimized using an artificial neural network. The maximum degradation rates of S. nigra LM01 were 58.09 % and 42.97 % for atrazine and nicosulfuron, respectively. The degradation rate of atrazine in the soil reached 67.94 % when the concentration was 108 CFU/g after 5 d and was less effective than that of nicosulfuron. Whole genome sequencing of strain LM01 helped elucidate the possible degradation pathways of atrazine and nicosulfuron. The protein sequences of strain LM01 were aligned with the sequences of the degraded proteins of the two herbicides by using the National Center for Biotechnology Information platform. The sequence (GE005358, GE001556, GE004212, GE005218, GE004846, GE002487) with the highest query cover was retained and docked with the small-molecule ligands of the herbicides. The results revealed a binding energy of - 6.23 kcal/mol between GE005358 and the atrazine ligand and - 6.66 kcal/mol between GE002487 and the nicosulfuron ligand.


Atrazine , Biodegradation, Environmental , Herbicides , Pyridines , Streptomyces , Sulfonylurea Compounds , Atrazine/metabolism , Atrazine/chemistry , Streptomyces/metabolism , Streptomyces/genetics , Herbicides/metabolism , Herbicides/chemistry , Sulfonylurea Compounds/metabolism , Sulfonylurea Compounds/chemistry , Pyridines/metabolism , Pyridines/chemistry , Soil Pollutants/metabolism , Genes, Bacterial , Neural Networks, Computer
10.
J Hazard Mater ; 471: 134355, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38643583

Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG.


Bacteria , Soil Microbiology , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism , Genes, Bacterial , Drug Resistance, Microbial/genetics , Soil/chemistry , Aerobiosis , Anaerobiosis , Drug Resistance, Bacterial/genetics
11.
J Hazard Mater ; 471: 134351, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38653136

Macrophyte rhizospheric dissolved organic matter (ROM) served as widespread abiotic components in aquatic ecosystems, and its effects on antibiotic residues and antibiotic resistance genes (ARGs) could not be ignored. However, specific influencing mechanisms for ROM on the fate of antibiotic residues and expression of ARGs still remained unclear. Herein, laboratory hydroponic experiments for water lettuce (Pistia stratiotes) were carried out to explore mutual interactions among ROM, sulfamethoxazole (SMX), bacterial community, and ARGs expression. Results showed ROM directly affect SMX concentrations through the binding process, while CO and N-H groups were main binding sites for ROM. Dynamic changes of ROM molecular composition diversified the DOM pool due to microbe-mediated oxidoreduction, with enrichment of heteroatoms (N, S, P) and decreased aromaticity. Microbial community analysis showed SMX pressure significantly stimulated the succession of bacterial structure in both bulk water and rhizospheric biofilms. Furthermore, network analysis further confirmed ROM bio-labile compositions as energy sources and electron shuttles directly influenced microbial structure, thereby facilitating proliferation of antibiotic resistant bacteria (Methylotenera, Sphingobium, Az spirillum) and ARGs (sul1, sul2, intl1). This investigation will provide scientific supports for the control of antibiotic residues and corresponding ARGs in aquatic ecosystems.


Anti-Bacterial Agents , Sulfamethoxazole , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Microbial/genetics , Bacteria/genetics , Bacteria/metabolism , Genes, Bacterial , Rhizosphere , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Microbiota , Biofilms
12.
J Hazard Mater ; 471: 134255, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38669934

In recent years, large quantities of pharmaceuticals and personal care products (PPCPs) have been discharged into sewers, while the mechanisms of PPCPs enrichment in sewer sediments have rarely been revealed. In this study, three PPCPs (tetracycline, sulfamethoxazole, and triclocarban) were added consecutively over a 90-day experimental period to reveal the mechanisms of PPCPs enrichment and the transmission of resistance genes in sewer sediments. The results showed that tetracycline (TC) and triclocarban (TCC) have higher adsorption concentration in sediments compared to sulfamethoxazole (SMX). The absolute abundance of Tets and suls genes increased in sediments under PPCPs pressure. The increase in secretion of extracellular polymeric substances (EPS) and the loosening of the structure exposed a large number of hydrophobic functional groups, which promoted the adsorption of PPCPs. The absolute abundance of antibiotic resistance genes (ARGs), EPS and the content of PPCPs in sediments exhibited significant correlations. The enrichment of PPCPs in sediments was attributed to the accumulation of EPS, which led to the proliferation of ARGs. These findings contributed to further understanding of the fate of PPCPs in sewer sediments and opened a new perspective for consideration of controlling the proliferation of resistance genes.


Cosmetics , Sewage , Sulfamethoxazole , Tetracycline , Water Pollutants, Chemical , Sulfamethoxazole/analysis , Adsorption , Tetracycline/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Carbanilides/analysis , Drug Resistance, Microbial/genetics , Genes, Bacterial , Anti-Bacterial Agents , Pharmaceutical Preparations/analysis , Extracellular Polymeric Substance Matrix
13.
J Hazard Mater ; 471: 134353, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38678707

Aquatic microplastics (MPs) act as reservoirs for microbial communities, fostering the formation of a mobile resistome encompassing diverse antibiotic (ARGs) and biocide/metal resistance genes (BMRGs), and mobile genetic elements (MGEs). This collective genetic repertoire, referred to as the "plastiome," can potentially perpetuate environmental antimicrobial resistance (AMR). Our study examining two Japanese rivers near Tokyo revealed that waterborne MPs are primarily composed of polyethylene and polypropylene fibers and sheets of diverse origin. Clinically important genera like Exiguobacterium and Eubacterium were notably enriched on MPs. Metagenomic analysis uncovered a 3.46-fold higher enrichment of ARGs on MPs than those in water, with multidrug resistance genes (MDRGs) and BMRGs prevailing, particularly within MPs. Specific ARG and BMRG subtypes linked to resistance to vancomycin, beta-lactams, biocides, arsenic, and mercury showed selective enrichment on MPs. Network analysis revealed intense associations between host genera with ARGs, BMRGs, and MGEs on MPs, emphasizing their role in coselection. In contrast, river water exhibited weaker associations. This study underscores the complex interactions shaping the mobile plastiome in aquatic environments and emphasizes the global imperative for research to comprehend and effectively control AMR within the One Health framework.


Microplastics , Rivers , Rivers/microbiology , Rivers/chemistry , Microplastics/toxicity , Anti-Bacterial Agents/pharmacology , Water Pollutants, Chemical/toxicity , Bacteria/genetics , Bacteria/drug effects , Water Microbiology , Interspersed Repetitive Sequences , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Disinfectants/pharmacology , Microbiota/drug effects , Drug Resistance, Microbial/genetics
14.
J Hazard Mater ; 471: 134344, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38678706

More information is needed to fully comprehend how acid mine drainage (AMD) affects the phototransformation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in karst water and sewage-irrigated farmland soil with abundant carbonate rocks (CaCO3) due to increasing pollution of AMD formed from pyrite (FeS2). The results showed FeS2 accelerated the inactivation of ARB with an inactivation of 8.7 log. Notably, extracellular and intracellular ARGs and mobile genetic elements (MGEs) also experienced rapid degradation. Additionally, the pH of the solution buffered by CaCO3 significantly influenced the photo-inactivation of ARB. The Fe2+ in neutral solution was present in Fe(II) coordination with strong reducing potential and played a crucial role in generating •OH (7.0 µM), which caused severe damage to ARB, ARGs, and MGEs. The •OH induced by photo-Fenton of FeS2 posed pressure to ARB, promoting oxidative stress response and increasing generation of reactive oxygen species (ROS), ultimately damaging cell membranes, proteins and DNA. Moreover, FeS2 contributed to a decrease in MIC of ARB from 24 mg/L to 4 mg/L. These findings highlight the importance of AMD in influencing karst water and sewage-irrigated farmland soil ecosystems. They are also critical in advancing the utilization of FeS2 to inactivate pathogenic bacteria.


Calcium Carbonate , Iron , Mining , Sulfides , Calcium Carbonate/chemistry , Iron/chemistry , Sulfides/chemistry , Interspersed Repetitive Sequences , Drug Resistance, Microbial/genetics , Bacteria/genetics , Bacteria/drug effects , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
15.
J Hazard Mater ; 471: 134404, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38688217

The influence of organic carbon on the proliferation of antibiotic resistance genes (ARGs) in the soil has been widely documented. However, it is unclear how soil organic carbon (SOC) interacts with the evolution of antibiotic resistance in bacteria. Here, we examined the variations in ARGs abundance during SOC mineralization and explored the microbiological mechanisms and key metabolic pathways involved in their coevolution. The results showed that the SOC mineralization rate was closely correlated with ARGs abundance (p < 0.05). High organic carbon (OC) mineralization was conducive to the occurrence of multidrug resistance genes. For example, multidrug_transporter and mexB increased 2.26 and 7.83 times from the initial level. The competitor (stress) evolutionary strategy model revealed that higher OC inputs drive environmental microorganisms to evolve from stress tolerant to high resistance and strong adaptation. Meta-genomic and transcriptomic analyses revealed that the conversion process of pyruvate to acetyl-CoA to acetate was the critical metabolic pathway for the co-regulation of antibiotic resistance. Gene deletion validation trials have demonstrated that the key functional genes (ackA and pta) involved in this process can modulate the development of vancomycin and multidrug resistance. This outcome provides a preliminary framework for microbial mechanisms that target the co-regulation of microbial OC conversion and the evolution of antibiotic resistance.


Carbon , Soil Microbiology , Soil , Carbon/metabolism , Carbon/chemistry , Soil/chemistry , Bacteria/metabolism , Bacteria/genetics , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial
16.
Sci Total Environ ; 929: 172558, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38643884

Compost-based organic fertilizers often contain high levels of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). Previous studies focused on quantification of total ARGs and MGEs. For a more accurate risk assessment of the dissemination risk of antibiotic resistance, it is necessary to quantify the intracellular and extracellular distribution of ARGs and MGEs. In the present study, extracellular ARGs and MGEs (eARGs and eMGEs) and intracellular ARGs and MGEs (iARGs and iMGEs) were separately analyzed in 51 commercial composts derived from different raw materials by quantitative polymerase chain reaction (qPCR) and metagenomic sequencing. Results showed that eARGs and eMGEs accounted for 11-56% and 4-45% of the total absolute abundance of ARGs and MGEs, respectively. Comparable diversity, host composition and association with MGEs were observed between eARGs and iARGs. Contents of high-risk ARGs were similar between eARGs and iARGs, with high-risk ARGs in the two forms accounting for 6.7% and 8.2% of the total abundances, respectively. Twenty-four percent of the overall ARGs were present in plasmids, while 56.7% of potentially mobile ARGs were found to be associated with plasmids. Variation partitioning analysis, null model and neutral community model indicated that the compositions of both eARGs and iARGs were largely driven by deterministic mechanisms. These results provide important insights into the cellular distribution of ARGs in manure composts that should be paid with specific attention in risk assessment and management.


Drug Resistance, Microbial , Fertilizers , Drug Resistance, Microbial/genetics , Soil Microbiology , Composting , Genes, Bacterial
17.
Sci Total Environ ; 927: 172216, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38583614

Antibiotic resistance genes (ARGs) are a major threat to human and environmental health. This study investigated the occurrence and distribution of ARGs in Lake Cajititlán, a hypereutrophic subtropical lake in Mexico contaminated by anthropogenic sources (urban wastewater and runoff from crop and livestock production). ARGs (a total of 475 genes) were detected in 22 bacterial genera, with Pseudomonas (144 genes), Stenotrophomonas (88 genes), Mycobacterium (54 genes), and Rhodococcus (27 genes) displaying the highest frequencies of ARGs. Among these, Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed the highest number of ARGs. The results revealed a diverse array of ARGs, including resistance to macrolides (11.55 %), aminoglycosides (8.22 %), glycopeptides (6.22 %), tetracyclines (4 %), sulfonamides (4 %), carbapenems (1.11 %), phenicols (0.88 %), fluoroquinolones (0.44 %), and lincosamides (0.22 %). The most frequently observed ARGs were associated with multidrug resistance (63.33 %), with MexF (42 genes), MexW (36 genes), smeD (31 genes), mtrA (25 genes), and KHM-1 (22 genes) being the most common. Lake Cajititlán is a recreational area for swimming, fishing, and boating, while also supporting irrigation for agriculture and potentially acting as a drinking water source for some communities. This raises concerns about the potential for exposure to antibiotic-resistant bacteria through these activities. The presence of ARGs in Lake Cajititlán poses a significant threat to both human and environmental health. Developing strategies to mitigate the risks of antibiotic resistance, including improving wastewater treatment, and promoting strategic antibiotic use and disposal, is crucial. This study represents a significant advancement in the understanding of antibiotic resistance dynamics in a hypereutrophic subtropical lake in a developing country, providing valuable insights for the scientific community and policymakers.


Drug Resistance, Microbial , Environmental Monitoring , Lakes , Lakes/microbiology , Drug Resistance, Microbial/genetics , Mexico , Anti-Bacterial Agents/pharmacology , Metagenomics , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Wastewater/microbiology , Bacteria/drug effects , Bacteria/genetics , Water Pollutants, Chemical/analysis
18.
Genome Biol ; 25(1): 93, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605417

Unraveling bacterial gene function drives progress in various areas, such as food production, pharmacology, and ecology. While omics technologies capture high-dimensional phenotypic data, linking them to genomic data is challenging, leaving 40-60% of bacterial genes undescribed. To address this bottleneck, we introduce Scoary2, an ultra-fast microbial genome-wide association studies (mGWAS) software. With its data exploration app and improved performance, Scoary2 is the first tool to enable the study of large phenotypic datasets using mGWAS. As proof of concept, we explore the metabolome of yogurts, each produced with a different Propionibacterium reichii strain and discover two genes affecting carnitine metabolism.


Genome-Wide Association Study , Multiomics , Phenotype , Genes, Bacterial , Genomics
19.
PeerJ ; 12: e17181, 2024.
Article En | MEDLINE | ID: mdl-38666081

Antimicrobial resistance (AMR) is a growing problem in African cattle production systems, posing a threat to human and animal health and the associated economic value chain. However, there is a poor understanding of the resistomes in small-holder cattle breeds in East African countries. This study aims to examine the distribution of antimicrobial resistance genes (ARGs) in Kenya, Tanzania, and Uganda cattle using a metagenomics approach. We used the SqueezeMeta-Abricate (assembly-based) pipeline to detect ARGs and benchmarked this approach using the Centifuge-AMRplusplus (read-based) pipeline to evaluate its efficiency. Our findings reveal a significant number of ARGs of critical medical and economic importance in all three countries, including resistance to drugs of last resort such as carbapenems, suggesting the presence of highly virulent and antibiotic-resistant bacterial pathogens (ESKAPE) circulating in East Africa. Shared ARGs such as aph(6)-id (aminoglycoside phosphotransferase), tet (tetracycline resistance gene), sul2 (sulfonamide resistance gene) and cfxA_gen (betalactamase gene) were detected. Assembly-based methods revealed fewer ARGs compared to read-based methods, indicating the sensitivity and specificity of read-based methods in resistome characterization. Our findings call for further surveillance to estimate the intensity of the antibiotic resistance problem and wider resistome classification. Effective management of livestock and antibiotic consumption is crucial in minimizing antimicrobial resistance and maximizing productivity, making these findings relevant to stakeholders, agriculturists, and veterinarians in East Africa and Africa at large.


Drug Resistance, Bacterial , Metagenomics , Animals , Cattle , Kenya/epidemiology , Uganda/epidemiology , Tanzania , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Genes, Bacterial/genetics
20.
Environ Int ; 186: 108654, 2024 Apr.
Article En | MEDLINE | ID: mdl-38621322

Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs.


Eutrophication , Geologic Sediments , Lakes , Lakes/microbiology , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/genetics , Bacteria/drug effects , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , China , Drug Resistance, Bacterial/genetics
...